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Abstract

We describe a computer-based database of polarised K3 surfaces
and explain the meaning of the information it contains. In a precise
sense, the database includes all K3 surfaces.
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1 Introduction

Many authors have compiled lists of K3 surfaces embedded in weighted pro-
jective space (wps). The first of these lists is the ‘famous 95’ weighted hyper-
surfaces of Reid [1980] (Theorem 4.5) and others. Next there are 84 families
of K3 surfaces in codimension 2 computed by Fletcher [2000] (section 13.8),
followed by 70 families in codimension 3 and 142 families in codimension 4
both computed by Altınok [1998]. Such lists could be continued indefinitely
in increasing codimension, as there are countably many deformation fami-
lies of polarised K3 surfaces, although the construction of explicit equations
becomes difficult.

We extend the classification of polarised K3 surfaces to give a list that
contains the numerical data of all polarised K3 surfaces in the precise sense
of Theorem 8 below. Although the list of families of polarised K3 surfaces is
infinite, the numerical data we work with behave in a regular way after the
first 15,000 or so families are obtained, and so a finite list can summarise the
whole classification. Even so, it is far too large to be reproduced in the way
that the existing lists have been. In fact, both the analysis used to create
the list and methods of interrogating it are handled by a computer. The
resulting list of 24,099 numerical K3 candidates (see Definition 6) is known as
the K3 database. It was created using the computer algebra system Magma

[Cannon, 2005; Bosma et al., 1997], and it is accessible in three ways: one can
run Magma itself, or connect to the web interface at [Brown et al., 2004]

(which runs Magma in the background) or install a SQL-style database
[Brown and Kerber, 2005] prepared from the on-line version. These are
discussed in section 4. Although computer access is the only serious way to
address such a database, K3 surfaces in low codimension are also available at
[Brown et al., 2004] including a new list of 163 K3 surfaces in codimension 5.

The main results of this paper explain the meaning of the K3 database.
We make this explicit in Meanings 7, 9, 10, 18. Theorem 8 explains the
sense in which it is comprehensive and the way in which we regard the K3
database as an upper bound for the numerical data of polarised K3 surfaces.
An immediate corollary is a sharp lower bound on the degree of polarised K3
surfaces; see section 4 for Magma code that makes this calculation.

Computation 1 If X, A is a polarised K3 surface, then the degree A2 of X
is at least 1/330. In more detail, both the degree A2 and the Picard number
ρX ≤ 20 of X are bounded below according to the genus g = h0(X, A) − 1 as

2



follows:
g −1 0 1 ≥ 2

lower bound for A2 1/330 1/42 1/2 2g − 2
lower bound for ρX 10 6 2 1

We clear up two points of confusion at once. First, there is no claim
that every numerical candidate in the K3 database comes from a polarised
K3 surface. Indeed, in Theorem 12 we show that one particular candidate
does not to arise as a K3 surface, at least not in an easy way. Second,
while each candidate in the database is given a plausible description as a K3
surface embedded in wps, there is no claim that this this description can be
realised, even when there is a K3 surface whose invariants match those of the
candidate.

More positively, there are various ways in which a candidate in the data-
base may be justified. One is to write down equations for a K3 surface in
wps and confirm its properties. This is done for all candidates in codimen-
sions 1, 2 and 3 in [Iano-Fletcher, 2000] and [Altınok, 1998]. Another is by
unprojection which is discussed in section 3; this is a ‘bottom up’ approach,
constructing complicated surfaces from easy ones. The reason for discussing
it here is not to propose to carry out the unprojection calculations but to
explain the descriptions of candidates in the database.

For the rest of this introduction, we explain the purpose of this classifi-
cation and relate it to others in the literature.

There are many reasons for assembling reasonably large databases of vari-
eties rather than restricting attention to those instances of classification that
result in short lists. Belcastro [2002], for instance, uses the famous 95 as a
testing ground for K3 mirror symmetry. Johnson and Kollár [2001] construct
and use lists of weighted hypersurfaces to find varieties admitting a Kähler–
Einstein metric. Corti, Pukhlikov and Reid [2000] use the famous 95 as the
starting point for a systematic and explicit study of birational rigidity and
the Sarkisov Program for Fano 3-folds. In some of these cases, one could re-
gard lists of varieties as being merely a convenient source of many examples,
rather than an essential ingredient. But already Belcastro is hampered by
restricting to hypersurfaces, since, not surprisingly, in seeking mirror pairs
she finds hypersurfaces whose partner, if it exists, is not another hypersurface
in wps.
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The main reason for extending the lists as we do is as part of the classi-
fication of Fano 3-folds. We explain this briefly; see [Altınok et al., 2002] for
much greater detail. A 3-fold X is a Fano 3-fold if it has at worst Q-factorial
terminal singularities and −KX is ample—it is common to insist that more-
over Pic(X) = Z and −KX is a generator. By [Kawamata, 1992], there are
only finitely many deformation families of Fano 3-folds. If the linear system
| − KX | contains an irreducible surface S with only Du Val singularities,
then S is a K3 surface and it is polarised by the trace of −KX . Such a
surface S is called a K3 elephant for X, and the vast majority of known Fano
3-folds have a K3 elephant. The main point of [Altınok et al., 2002] is to
attempt the converse operation: given a polarised K3 surface S, A, construct
a Fano 3-fold X having S as its K3 elephant. This can be regarded as a
deformation–extension problem, in which one must include a new variable in
the equations of S while maintaining the irreducibility (at the very least) of
the locus they define. From this point of view, the K3 database contains a
coarse classification of Fano-with-elephant 3-folds as a finite sublist (although
exactly which sublist is the interesting point).

There are many other lists of varieties we could mention. Following clas-
sifications by Miranda and Persson [1989] and others, Shimada and Zhang
[2001], [Shimada, 2000] classify K3 surfaces that arise as elliptic fibrations.
Kreuzer and Skarke [1998] classify K3 surfaces that arise as toric hyper-
surfaces, and in higher dimension, they classify Calabi–Yau 3-fold toric hy-
persurfaces [Kreuzer and Skarke, 2000]. Their famous Calabi–Yau database
contains nearly 500 million families of Calabi–Yau 3-folds; it is not known
whether there are infinitely many families or not. Buckley and Szendrői
[2005], [Buckley, 2003] construct Calabi–Yau 3-folds by methods similar to
those we use here, although their interest is not in constructing lists of vari-
eties but rather to find examples not already in the vast Kreuzer–Skarke list.
More recently, Caravantes [2005] computes examples of Fano 3-folds that are
quotients of other Fano 3-folds—so-called Fano–Enriques 3-folds—in codi-
mension at most 3, and Kasprzyk [2003; 2005] computes the classifications
of toric Fano 3-folds under various hypotheses.

2 Families of K3 surfaces

The methods used here follow Altınok’s approach using Hilbert series, as
explained in Altınok–Brown–Reid [2002].
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2.1 Polarised K3 surfaces

A polarised K3 surface is a pair X, A where X is a surface having only Du Val
singularities, trivial canonical divisor KX = 0 and irregularity q = 0, while
A is an ample divisor on X. Recall that a Du Val singularity (or Kleinian
or ADE singularity) is the germ at the origin of C2/G where G ⊂ SL(2, C)
is a finite group; equivalent conditions, see [Durfee, 1979] or [Reid, 1980],
include being defined by an equation from the list of ADE normal forms, or
imposing no conditions on adjuction so that the canonical class pulls back
to a minimal resolution. Throughout this paper, K3 surface refers to such a
pair X, A.

Graded ring of a K3 surface A polarised K3 surface has a graded ring
R(X, A) = ⊕n≥0H

0(X, nA), and the Hilbert series PX(t) of X, A is defined
to be the Hilbert series of this graded ring:

PX(t) =
∑

t≥0

h0(X, nA)tn.

Since A is ample, R(X, A) is a finitely-generated k-algebra and the Proj
correspondence embeds X in wps:

X = Proj R(X, A) ⊂ PN for some PN = P(a0, . . . , aN)

where we suppose that R(X, A) is minimally generated as a k-algebra by ho-
mogeneous elements x0, . . . , xN ∈ R(X, A) with deg xi = ai. A minimal free
resolution of R(X, A) as a k[PN ]-module then exhibits a preferred rational
form of the formal power series PX(t):

PX(t) =
HX(t)∏
(1 − tai)

(1)

where HX(t) is a polynomial, the Hilbert numerator of X, A and the de-
nominator product is taken over the weights a0, . . . , aN of the wps PN . The
codimension of X, A is defined to be the codimension of X in this embedding.
The genus of X, A is h0(X, A) − 1, which is an integer ≥ −1.

Riemann–Roch and baskets of singularities Altınok’s Riemann–Roch
formula, Theorem 2 below, computes the Hilbert series of a K3 surface X, A.
It involves the notion of a basket of quotient singularities, which is explained
below, to compute the effect of the singularities of X, A on h0(X, nA).
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Theorem 2 (Altınok[1998] Theorem 4.6, [2003] 3.2) Let X, A be a po-
larised K3 surface. Then

PX(t) =
1 + t

1 − t
+

t(1 + t)

(1 − t)3

A2

2
−

∑

B

1

(1 − tr)

r−1∑

i=1

bi(r − bi)ti

2r
(2)

where

A2 = 2g − 2 +
∑

B

b(r − b)

r
. (3)

In these formulas, B is a collection of cyclic quotient singularities 1

r
(a,−a) at

which the polarising divisor A restricts to the eigensheaf La of the quotient.
The notation x denotes the minimal nonnegative residue of x modulo r, and
b = b satisfies ab = 1.

The collection B of cyclic quotient singularities is called the basket of singu-
larities of X, A. It computes the contribution of the actual singularities of
X, A to Riemann–Roch. In general the singularities of X may differ from B.
This phenomenon is well-known since [Reid, 1980] and [Reid, 1987], although
here we need to know how baskets arise.

If p ∈ X is a Du Val singularity, then it is also polarised by A—this global
polarising divisor restricts to some element of the local class group of p ∈ X.
Taking a small analytic neighbourhood p ∈ U ⊂ X, there is a deformation
of U, A|U so that the general fibre Ut, At has only cyclic quotient singularities
and at each such q ∈ Ut the divisor At restricts to a generator of the local
class group. Thus q ∈ Ut is of type 1

r
(a,−a) for coprime 0 < a < r. Let Bp be

the collection of these polarised cyclic quotient singularities. This collection
Bp is uniquely determined by the polarised singularity p ∈ X. Finally, B is
the collection of all Bp as p runs through the Du Val singularities of X. The
following result is implicit in [Reid, 1987] (9.4).

Lemma 3 In the notation above, let Γp be the dual graph of the resolution
of p ∈ X and Γq1

, . . . , Γqk
be those of the basket Bp. Then the disjoint union

∪Γqi
embeds as a subgraph of Γp so that no two components, Γqi

and Γqj
for

i 6= j, are joined by an edge of Γp.
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Proof By [Reid, 1987] (9.4) and (4.10) (suitably re-ordered), the only po-
larised Du Val singularities that lead to a non-empty basket are:

p ∈ X basket
Ank−1 k × An−1

D2k−1 (2k + 1) × A1

Dk+2 2 × A1

E6 2 × A2

D2k k × A1

E7 3 × A1.

(4)

In each case, the dual graphs of the basket can be arranged as a disconnected
subgraph of Γp as claimed. Q.E.D.

It would be convenient to know that X deforms to a K3 surface with singu-
larities equal to the basket, but we do not know that or need it.

Proposition 4 If B is a basket for a K3 surface of genus g, then

∑

B

(r − 1) ≤ 19 and 2g − 2 +
∑

B

b(r − b)

r
> 0.

Furthermore, if the singularities of B lie on a surface Y , then the minimal
resolution of these singularities must not contain 17 disjoint −2-curves and
all coefficients of the power series P (t) computed by formula (2) are non
negative.

Proof If the singularities of X are equal to those of the basket (as polarised
singularities), then all the claims are standard: the first comes from the
bound on the Picard rank of the resolution; the second is A2 > 0; the third
is a standard consequence of the Torelli theorem. Even if the singularities
of X are not those of B, the second inequality holds automatically since the
basket computes A2 exactly.

In general, Lemma 3 shows that the number of exceptional curves in a
resolution of X is at least that in the resolution of its basket, and moreover
if one can find k disjoint −2-curves in the resolution of the basket then the
same is true for the resolution of singularities of X itself. Q.E.D.
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Computation 5 Let Bg be the set of baskets which appear in Riemann–Roch
for a K3 surface with genus g ≥ −1. Then Bg is finite and of size

g −1 0 1 ≥ 2
#Bg 4281 6479 6627 6628

and moreover Bg = B2 whenever g ≥ 3.

When g ≤ 2, this is the result of a simple computer enumeration of all
possible baskets of singularities of type 1

r
(a,−a) for coprime 0 < a < r

satisfying the four conditions of Proposition 4. The fact that Bg = B2 when
g ≥ 3 is immediate from the form of the degree condition A2 > 0. The
‘missing’ basket in genus 1 is the empty one: there is no nonsingular K3
surface with g = 1.

2.2 The meaning of the K3 database

The K3 database is intended to represent all possible K3 surfaces X, A. Here
we say in what sense every K3 surface appears in the database, and conversely
we begin to see to what extent items in the database come from K3 surfaces.

Definition 6 A numerical K3 candidate is a pair (g,B), where g ≥ −1 is
an integer and B is a basket from the set Bg constructed in Computation 5.

A numerical K3 candidate contains exactly the data needed to compute a
Hilbert series using the formula of Theorem 2.

Meaning 7 The K3 database is a finite set DK3 whose elements are numer-
ical K3 candidates. It includes the candidates (g,B) for −1 ≤ g ≤ 2 and all
B ∈ Bg.

For each candidate ξ = (g,B), we define formally a degree denoted A2
ξ

and a Hilbert series denoted Pξ(t) by the formulas (3) and (2) respectively.

Theorem 8 (Completeness of the K3 database) Let X, A be a polar-
ised K3 surface of genus g. Then X, A is represented in the K3 database DK3

as follows:

• if g ≤ 2, then there is a numerical K3 candidate ξ = (g,B) ∈ DK3 with

A2 = A2

ξ and PX(t) = Pξ(t).
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• if g ≥ 3, then there is a numerical K3 candidate ξ = (2,B) ∈ DK3 with

A2 = A2

ξ + 2(g − 2) and PX(t) = Pξ(t) +
t(1 + t)

(1 − t)3
(g − 2).

Proof If g ≤ 2, then this follows immediately from Theorem 2 and Propo-
sition 4. When g ≥ 3, it holds because B2 = Bg from Computation 5 implies
that the formulas (3) and (2) differ from the g = 2 case only by the 2g term
in A2.

Q.E.D.

Weights and codimension The K3 database includes extra information
about each entry: each ξ ∈ DK3 has a sequence of weights (a0, . . . , aN)
associated to it with positive integers ai. The hope is that a K3 surface
X, A exists with numerical data ξ and embedded by (all multiples of) A in
PN(a0, . . . , aN).

The naive method to generate such weights generalises the first examples
such as in [Altınok et al., 2002] section 1; variations of it are described
in [Iano-Fletcher, 2000] (section 18). If Pξ(t) = 1 + p1t + p2t

2 + · · · is the
Hilbert series of some ring R, then R must have p1 generators in degree 1. We
compute (1−t)p1Pξ = 1+p′kt

k +· · · where p′k is the first nontrivial coefficient.
If p′k > 0, then R must also have p′

k generators in degree k; in that case we
compute (1 − t)p1(1 − tk)p′

kPξ and continue. If p′k < 0, then R must have at
least |p′k| relations in degree k; in that case we stop the calculation and let
the weights of ξ be the collection of weights of all generators deduced so far.

Thus, just as in section 2.1, the weights determine a preferred rational
expression for the corresponding Hilbert series. Its numerator is again called
the Hilbert numerator and is denoted Hξ(t) in this context. (In principle,
it is possible that the calculation breaks down too soon and Hξ is not a
polynomial, but in practice this does not happen.) In this way, the weights
of ξ determine a prediction of a K3 surface X ⊂ PN(a0, . . . , aN) that realises
ξ. With this in mind, the codimension of ξ is defined to be N − 2.

Meaning 9 The K3 database DK3 comprises all pairs (g,B) with g ≤ 2 and
B ∈ Bg together with those pairs with 3 ≤ g ≤ 9 having codimension at most
7. For each genus g, the pairs (g,B) are listed in increasing order of Hilbert
series.
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The order on Hilbert series is of course the natural lexicographic order. The
weights, and hence the codimension, are those computed in section 3 using
more systematic methods than the naive one above. The number of numerical
K3 candidates per genus and codimension is listed in Table 1 of Appendix A.

Degenerations of graded rings Of course, the Hilbert series of a graded
ring does not determine that ring. Whichever method is used to compute the
weights, they are not expected to match every K3 surface X, A with given
Hilbert series.

Meaning 10 If X, A is a K3 surface with genus ≤ 2, then the Hilbert series
PX,A(t) of X will be that of some ξ ∈ DK3. However, the weights assigned
to the candidate ξ will not necessarily be those of a set of generators of the
graded ring R(X, A).

Consider the well-known example of a general complete intersection of
equations of degrees 2 and 4

Y2,4 ⊂ P4(1, 1, 1, 1, 2)

where the weight 2 variable does not appear in the degree 2 equation. This
K3 surface has the same Hilbert series as the quartic surface in P3. The
corresponding ξ ∈ DK3 (which is listed even though g = 3) is assigned weights
(1, 1, 1, 1), the weights of a typical example in P3, rather than the weights of
P4 above.

In [Brown, 2005], a computer search with Magma found other degener-
ations of K3 surfaces in codimension 1 and 2. We reproduce some results
of that search in Table 4 in Appendix A as an illustration, but see [Brown,
2005] for more and for the combination of degeneration and unprojection
calculations behind them.

2.3 Elliptic fibrations and Shimada’s classification

By Theorem 8, the K3 database contains all K3 surfaces (at least of genus
≤ 2). From now on, we consider the converse: which candidates in the
database actually arise as K3 surfaces. We understand a two different positive
answers.
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Definition 11 Let ξ ∈ DK3 be a numerical K3 candidate from the K3 data-
base and (a0, . . . , aN) its weights. We say that

(a) ξ represents a K3 Hilbert series if there is a polarised K3 surface X, A
with PX(t) = Pξ(t).

(b) ξ represents a K3 surface if there is a polarised K3 surface X, A with
PX(t) = Pξ(t) whose graded ring R(X, A) has a generating set x0, . . . , xN ∈
R(X, A) which are homogeneous of degrees deg xi = ai.

We consider the stronger statement (b) in section 3 below. The natural
approach to (a) is to apply the Torelli theorem for K3 surfaces; we do not do
that here, although it is a straightforward computer calculation to confirm
that all candidates in codimension up to 6 do at least represent a K3 Hilbert
series. Instead, we compare our database with a classification of elliptic K3
surfaces due to Shimada [2000].

An elliptic K3 surface is a fibration f : Y → P1 where Y is a nonsingular
K3 surface and the general fibre is a curve of genus 1. (We do not assume that
f has a section.) Shimada [2000] classifies the collections of singular fibres
that do appear on elliptic K3 surfaces into 3937 different collections (many
of which can appear in fibrations having different numbers of sections).

A nonexistence result There are candidates that cannot easily represent
a K3 Hilbert series. A polarisation A is said to be simple if it intersects
the exceptional locus of each singularity transversely at a single point. The
candidate in the theorem below is number 76 (of genus 0) in DK3.

Theorem 12 Let ξ = (g,B) ∈ DK3 be the candidate with g = 0 and B =
{1

2
(1, 1), 2× 1

10
(1, 9)}. Then there does not exist a polarised K3 surface X, A

with PX(t) = Pξ(t) for which the polarisation is simple.

Proof Suppose X, A is a polarised K3 surface with PX(t) = Pξ(t). We have
H0(X, A) = 1 since g = 0, so we may regard A ⊂ X as an effective divisor
with A2 = −2. Let ϕ : Y → X be the minimal resolution of singlarities; Y is
a nonsingular K3 surface. We estimate the rank of the Picard group Pic(Y ).

In the group Pic(Y ), the set of exceptional curves of ϕ are independent of
each other and of the components of A. The exceptional curves will generate
a subgroup of rank 19 if the singularities of X are exactly those of the basket.
The list of possible degenerations of a basket in display (4) shows that that if
the singularities of X are not those of the basket, then the exceptional curves
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will generate a subgroup of rank at least 20. Since the Picard rank of a K3
surface is at most 20, we conclude that the singularities of X are those of its
basket and that A is an irreducible rational curve—otherwise its components
would also contribute independently to a rank exceeding 20.
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Figure 1: A configuration of curves on Y

So, since the polarisation is simple, the configuration of 20 nonsingular
rational curves, each with selfintersection −2, pictured in Figure 1 lies on Y .
The divisor

2B + 4A + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

is an elliptic fibre Ẽ7 on Y . This fibre generates an elliptic fibration on Y
with at least 2 sections (being the two exceptional curves C4, D4 adjacent to

the Ẽ7 configuration). The remaining exceptional curves must be contained
in other elliptic fibres. Thus the only possibilities for the singular fibres of
this fibration are Ẽ7 + Ã5 + Ã5, Ẽ7 + Ã5 + Ã5 + Ã1 and Ẽ7 + Ã11. Such
combinations of elliptic fibres do occur according to Shimada’s classification
[Shimada, 2000], but they only occur with no sections at all or with exactly
1 section. So Y cannot exist as a K3 surface, and so neither does X. Q.E.D.

Realising a Hilbert series In a closely-related example, let f : Y → P1

be the elliptic K3 surface number 3305 in Shimada’s classification. It has
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two singular fibres, of types Ẽ7 and Ã11 respectively, and was one of the
cases considered in the proof of Theorem 12. Furthermore, the Mordell–
Weil group of f contains exactly one element which is the unique section
of f . Therefore, the K3 surface Y contains the configuration of −2-curves
pictured in Figure 2.

We define a Q-divisor B on Y supported on this configuration of curves:

B =
1

16
(E1 + 2E2 + · · ·+ 15E15) + E16 +

1

4
(3E17 + 2E18 + E19) +

1

2
E20.

It is easy to check that B is Q-ample (modulo some −2-curves in its support
on which it is trivial) and that some multiple of B gives a morphism ϕ of Y
to some projective space that is birational to its image and contracts all of
the curves Ei of the configuration except E0 and E16. Let X = ϕ(Y ) and
define A to be the (integral) divisor ϕ∗(B) on X. Again, it is easy to check
that A2 = 3/16 and that the basket B and genus g of X, A are

B =

{
1

2
(1, 1),

1

4
(1, 3),

1

16
(1, 15)

}
and g = 0. (5)

�
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�

@
@
@...

E0 E1

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Section of the fibration is E12

Fibre Ã11 is E0 + E1 + · · ·+ E11

Fibre Ẽ7 is (E13 + E19) + 2(E14 + E18 + E20) + 3(E15 + E17) + 4E16

Figure 2: Shimada’s elliptic fibration number 3305

Indeed, DK3 contains such a numerical K3 candidate ξ = (g,B). In the
K3 database it is number 35 (of genus 0) where it is described provocatively
as

X ⊂ P12(1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).
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We conclude that ξ represents a K3 Hilbert series. But bear in mind what we
are not claiming: while this description is meaningful, one cannot conclude
that there really is a quasismooth K3 surface in this wps that realises ξ.

3 Numerical unprojection and weights

Theorem 12 shows that there are candidates in the database that might not
even represent a K3 Hilbert series, let alone a K3 surface. Even so, here
we attempt to compute plausible weights for every ξ ∈ DK3 as a first step
towards the stronger statement (b).

The results of Reid, Fletcher [2000] and Altınok [1998] imply that every
ξ ∈ DK3 with codimension at most 3 represents a K3 surface. Altınok also
uses unprojection methods to show that the majority of ξ with codimension 4
represent a K3 surface, which Frantzen [2004] extends to confirm the same for
some in codimension 5. We use unprojection methods to make predictions
of weights in higher codimension—in the precise sense of Computation 17
below—although we cannot carry out the calculations to confirm that every
ξ ∈ DK3 represents a K3 surface.

3.1 Type I and Type IIn unprojections

Kustin–Miller unprojections Type I, or Kustin–Miller, unprojection is
a general operation that constructs bigger Gorenstein rings from smaller ones.
We use it to mean the map X 99K Y in the following theorem.

Theorem 13 (Papadakis–Reid [2004]) Let X, A be a polarised K3 sur-
face and X ⊂ P(a0, . . . , aN) its embedding by A. Suppose that X contains
the coordinate line C = P(ai, aj) and that X is quasismooth along C in this
embedding. Then

(a) There is a K3 surface Y ⊂ P(a0, . . . , aN , ai + aj) containing the coor-
dinate point PN+1 = (0, . . . , 0, 1).

(b) The Gorenstein projection of Y from PN+1 is a birational map Y 99K
X with exceptional sets C ⊂ X and PN+1 ∈ Y . The birational inverse
X → Y is the contraction of the −2-curve C ⊂ X.

(c) If ai + aj + ak > a` for every k, ` ∈ {0, . . . , N} \ {i, j}, then the
unprojection equations of Y embedded in P(a0, . . . , aN , ai +aj) have no linear
terms.
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(d) Y is polarised by B = A + 1

ai+aj
C, and its Hilbert series is

PY,B(t) = PX,A(t) +
tai+aj

(1 − tai+aj )(1 − tai)(1 − taj )
.

In particular, the genus of Y, B equals the genus of X, A.
(e) Let BY be the basket of Y and BX that of X. Then

BX ∪

{
1

ai + aj

(ai, aj)

}
= BY ∪

{
1

ai

(aj,−aj),
1

aj

(ai,−ai),

}

where any singularity type 1

r
(a,−a) of index r = 1 can be omitted.

The proof of most of this theorem is given (or implicit) across a number of
sources including [Papadakis and Reid, 2004; Altınok, 1998; Altınok et al.,
2002; Frantzen, 2004], so we sketch a proof here for convenience using only
the main theorem of [Papadakis and Reid, 2004].

Proof The setup C ⊂ X is of a Type I unprojection: the ideals of X ⊂
PN and C ⊂ PN are Gorenstein. It follows by [Papadakis and Reid, 2004]

Theorem 1 that there is a rational form s ∈ C(X) on the affine cone X
of X, unique up to scalar multiple and of weight ai + aj, that has a single
pole along C. The extension of algebras R(X, A) ⊂ R(X, A)[s] inside C(X)
defines a birational map of varieties X 99K Y contracting exactly C. Since X
is quasismooth, this map is a morphism and so it is the contraction of a −2-
curve on X, and X is a partial resolution of Y . In particular, the resulting
Y is again a K3 surface.

If x0, . . . , xN are given generators of R(X, A) of degrees deg xi = ai, we
extend this list by xN+1 = s to give an embedding of Y as in (a). Eliminating
s from the coordinate ring of Y in this embedding recovers X, which is (b).

According to the recipe of [Papadakis and Reid, 2004] Theorem 1, the
unprojection equations are of the form

xN+1xk = gk for k 6= i, j and some gk ∈ R(X, A).

These equations have degree ai+aj+ak for k in the set {0, . . . , N}\{i, j}. The
condition given in (c) is that this degree is higher than any of the variables,
and so these variables cannot appear linearly.

The divisor of s on X contains C with coefficient −1 and is linearly
equivalent to (ai + aj)A. So expressed as a divisor on X before contracting
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C, the hyperplane section of Y is B as stated in (d). The formula computes
the number of monomials added to R(X, A) in each degree by the inclusion
of s. It counts multiples of s by the variables xi, xj and by s itself—all other
monomials sxk can be eliminated by the unprojection equations.

Finally, (e) follows from the formula in (d) together with Theorem 2.
Alternatively, one sees from the unprojection equations that PN+1 ∈ Y is of
type 1

ai+aj
(ai, aj) which forces the quotient singularities of X along C to be

the stated pair. Q.E.D.

In principle, this theorem provides an inductive framework for generating
K3 surfaces in high codimension to realise items in DK3. Indeed, this is how
Altınok [1998] and Frantzen [2004] construct K3 surfaces in codimension 4
and 5. However, verifying that such X ⊃ C exist and is quasismooth seems
difficult in general. Instead, we use the theorem to generate plausible weights
for any ξ ∈ DK3 as follows.

Definition 14 For η = (g,B) ∈ DK3 and p = 1

r
(a,−a) ∈ B, the numerical

projection of p in η is ξ = (g,B′) where

B′ ∪

{
1

r
(a,−a)

}
= B ∪

{
1

a
(r,−r),

1

r − a
(r,−r)

}

and we omit any singularity of the type 1

s
(c,−c) of index s = 1.

Algorithm 15 (Type I forcing) For fixed genus −1 ≤ g ≤ 2, let DK3(g)
be the subset of DK3 of numerical K3 candidates with genus g ordered in
increasing Hilbert series order.

For η = (g,B) ∈ DK3(g) do

(1) if Pη is that of a known K3 surface of codimension ≤ 2, then assign it
these known weights; continue with the next η.

(2) for each p = 1

r
(a,−a) ∈ B

(a) compute the numerical projection ξ of p in η

(b) if (g, ξ) ∈ DK3(g) and the pair a, r − a occurs among the weights
W of ξ, then let the weights of ξ be W ∪ {r}; continue with the
next η.

(3) apply the naive algorithm of section 2.2 to generate weights for η; con-
tinue with the next η.
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In (1), we take the 95 + 84 K3 surfaces in codimension at most 2 as known.
Of course, in (2)(b) the pair (g, ξ) will be in DK3 if and only if A2

ξ > 0, and
furthermore the weights of ξ will be known inductively because ξ appears in
DK3(g) ahead of η by the Hilbert series order together with Theorem 13(d).

Part (3) of the algorithm is not very satisfactory. One can improve on
the naive algorithm by adding other weights to realise the basket better, for
instance. But we don’t discuss that here since in practice the unprojection
step (2) is enough once higher unprojections are included.

Higher unprojections Type I unprojections are only one kind of unpro-
jection calculation associated to Gorenstein rings. At the time of writing, it
is the only one for which the theory is complete, although Papadakis [2005]

has recently proved some results for Type II. However, it is still possible to
calculate with other kinds. Experience from examples suggests the following
numerical characterisation of another type of unprojection.

Definition 16 Suppose ξ ∈ DK3 is a numerical projection of η—that is, ξ
and η are related as in Definition 14. Let Wξ be the weights of ξ and n be
a positive integer. Then the projection is a numerical Type IIn projection
if (r − a) ∈ Wξ and n + 1 is the smallest positive integer k for which ka ∈
Wξ \ {r − a} (or the analogous statement with a and r − a switching roles).

In this situation and notation, we define the expected weights of η to be

Wη = Wξ ∪ {r, r + a, r + 2a, · · · , r + na}.

The idea is that the new weight r corresponds to an unprojection variable s as
for Type I, but that additional variables are needed to make the unprojection
projectively normal.

For example, projecting from

1

2
(1, 1) ∈ Y ⊂ P5(1, 2, 2, 3, 5, 7)

is a numerical Type II1 projection and has image

P1 ⊂ X15 ⊂ P5(1, 2, 5, 7).

A single variable of weight 2 has been eliminated, and with it the variable of
weight 3 that polarised the singularity is also eliminated. One could eliminate
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the weight 3 variable alone to see the non-normal unprojection. See section 4
for this projection in the database.

We can force Type II unprojections just as for Type I in Algorithm 15.
In constructing DK3, exactly this is done using Types II1 and II2 once the
possibility of a Type I unprojection has been exhausted. Once constructed,
the whole K3 database is subjected to the following consistency check.

Computation 17 (Numerical Type I and II consistency) The weights
of numerical K3 candidates in DK3 are consistent with all projections of nu-
merical Type I and Type IIn for any n > 0 from any candidate of codimension
3 or more.

The proof is a computer calculation: for each ξ ∈ DK3 that does not cor-
respond to a known K3 surface in codimension 1 or 2, the weights of ξ are
computed according to every projection of numerical Types I and II, and the
results are required to be the same. Candidates in codimension 1 or 2 are
ignored since they are already known to be correct (and projection can be
more complicated in such small graded rings).

This computation is important. Together with the few hundred initial
cases, it is the main supporting evidence that the families described by the
database do represent K3 surfaces in the sense of Definition 11(b).

Meaning 18 The weights associated to numerical K3 candidates in DK3 are
consistent with the existence of Type I and II unprojections between K3 sur-
faces realising them.

One could use the same unprojection calculus to predict weights for any
(g,B) with g ≥ 3 which is not listed in DK3. The results would be the same
as those for (2,B) but with the inclusion of the weight 1 an additional g − 2
times. Such continuation of DK3 would be visible in Table 1 as the g = 2
column copied in each column to the right, but in higher codimension at
each higher genus (with the two candidates in minimal codimension put in
codimensions g − 1 and g − 2, as at the head of the g = 3 column).

3.2 K3 surfaces admitting no Gorenstein projection

Since the existence of projections is the basis for the computation of higher
codimension weights in DK3, the following result limiting those numerical K3
candidates having no projections, or only projections not of numerical Type I
or II, is important.
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Computation 19 Let ξ = (g,B) ∈ DK3 be a numerical K3 candidate.
If g ≤ 2 and ξ does not have any numerical projection to another polarised

K3 surface, then ξ is one of the following:

g ξ
−1 codim ξ ≤ 4 and ξ is one of 36 cases of Table 2

0 codim ξ = 1 and ξ is one of 6 cases of Table 3
1 numerical data of X12 ⊂ P(1, 1, 4, 6)
2 numerical data of X6 ⊂ P(1, 1, 1, 3)

If ξ has at least one numerical projection but does not have a numerical
projection of Type I or II, then g = −1 and ξ is of the form

X ⊂ P7+3k(24+k, 34+2k) for k = 0, . . . , 6

(where 2n indicates n occurrences of weight 2) with B = {(10 + k)× 1

2
(1, 1)}

and A2 = (k + 2)/2, or ξ is one of the following 3 cases:

X ⊂ P8(8, 8, 9, 10, 11, 12, 13, 14, 15), A2 = 1

2
+ 3

4
+ 3·5

8
+ 8

9
= 1/72;

X ⊂ P7(7, 7, 8, 9, 10, 11, 12, 13), A2 = 2·5
7

+ 3·4
7

+ 7

8
= 1/56;

X ⊂ P5(4, 5, 5, 6, 7, 8), A2 = 1

2
+ 3

4
+ 2 × 4

5
+ 2·3

5
= 1/20

where 1

r
(a,−a) ∈ B is represented by its contribution b(r− b)/r to A2 in (3).

The first half of this computation already appeared in [Brown, 2003]. The
second half can be computed from the K3 database using code similar to
that of section 4.

4 Using the K3 database

There are three ways to access the K3 database. The main one is to use
Magma as described below. Second, the website [Brown et al., 2004] has a
bureaucratic front-end to Magma with a form to fill in that can be submitted
to the K3 database. And third, there is a SQL-style version of the database
posted on the website [Brown et al., 2004] that can be downloaded and
installed under an SQL server—of course, this is static and does not include
some data that is computed live by Magma.
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The K3 database in Magma The computer algebra system Magma

[Cannon, 2005; Bosma et al., 1997] (version 2.11 or higher) contains a data-
base of 24,099 representative K3 surfaces. We give an example of a continuous
session using this database. Having already started Magma (typically by
typing magma at a command line), we name the K3 database D.

> D := K3Database();

> D;

The database of K3 surfaces

Now we pick out a surface X with given weights. It can be analysed us-
ing various function calls like Degree(X). But simply printing it on screen
presents all of its useful data.

> X := K3Surface(D,[1,2,2,3,5,7]);

> Degree(X);

5/7

> X;

K3 surface no.797, genus 0, in codimension 3 with data

Weights: [ 1, 2, 2, 3, 5, 7 ]

Basket: 2 x 1/2(1,1), 1/7(2,5)

Degree: 5/7 Singular rank: 8

Numerator: -t^20 + ... + t^11 - t^9 - t^8 - t^7 - t^6 + 1

Projection to codim 2 K3 no.796 -- type I from 1/7(2,5)

Projection to codim 1 K3 no.251 -- type II_1 from 1/2(1,1)

Unproj’n from codim 4 K3 no.798 -- type I from 1/9(2,7)

Unproj’n from codim 4 K3 no.816 -- type I from 1/3(1,2)

Unproj’n from codim 5 K3 no.1642 -- type II_1 from 1/2(1,1)

In this case, reading the numerator suggests there are four equations of
weights 6,7,8,9 respectively. In fact, it is known that Gorenstein rings in
codimension 3 have an odd number of relations, so one guesses that there are
5 equations, the missing one being in degree 10, masked in the numerator by
some syzygy also of degree 10. This now works, and one can write X as the
five maximal pfaffians of a skew 5× 5 matrix—compare with [Altınok et al.,
2002] Example 3.7.

The weights of X can be deduced using a Type I unprojection. Indeed,
we see that the g = 0 surface number 796 has the right numerical properties
to be a Type I projection from the 1

7
(2, 5) point of X.
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> K3Surface(D,0,796);

K3 surface no.796, genus 0, in codimension 2 with data

Weights: [ 1, 2, 2, 3, 5 ]

Basket: 3 x 1/2(1,1), 1/5(2,3)

Degree: 7/10 Singular rank: 7

Numerator: t^13 - t^7 - t^6 + 1

[ ... 2 projections and 3 unprojections including ... ]

Unproj’n from codim 3 K3 no.797 -- type I from 1/7(2,5)

Indeed, this can be realised and the unprojection can be calculated—compare
again [Altınok et al., 2002] Example 3.7.

The surface X has a second projection. By Computation 17, the weights
of X can be calculated using this projection instead and should give the same
result. Indeed, looking at the image of the numerical projection, we see that
its weights differ only by the missing pair 2, 3, which is also the prediction
using the numerical Type II1 projection of Definition 16.

> K3Surface(D,0,251);

K3 surface no.251, genus 0, in codimension 1 with data

Weights: [ 1, 2, 5, 7 ]

Basket: 1/2(1,1), 1/7(2,5)

Degree: 3/14 Singular rank: 7

Numerator: -t^15 + 1

[ ... 1 projection and 3 unprojections including ... ]

Unproj’n from codim 3 K3 no.797 -- type II_1 from 1/2(1,1)

One can make more serious searches, testing predicates on each surface
in the database. For example, we make a sequence containing those codi-
mension 5 surfaces with no unprojections; there is only one of them.

> K3s := [ X : X in D | Codimension(X) eq 5 and

#Unprojections(X) eq 0 ];

> #K3s;

1

> Y := K3s[1];

> Weights(Y);

[ 7, 7, 8, 9, 10, 11, 12, 13 ]

> Basket(Y);

1/7(2,5), 1/7(3,4), 1/8(1,7)
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Or we can confirm Computation 1; X66 ⊂ P(5, 6, 22, 33) has degree 1/330.

> [ Weights(X) : X in D | Degree(X) le 1/330 ];

[ [ 5, 6, 22, 33 ] ]

To give a typical calculation, we write a function to list all projections of
the K3 surface number 35 constructed in section 2.3.

> function projections(X,D)

> P := {X};

> todo := {X};

> repeat

> todo := &join[ { K3Surface(D,Genus(X),P[1])

> : P in Projections(Y) } : Y in todo ];

> P join:= todo;

> until #todo eq 0;

> return P;

> end function;

We apply this function to X and look at the codimensions of its projections.

> X := K3Surface(D,0,35);

> {* Codimension(Y): Y in projections(X,D) *};

{* 1^^6, 2^^2, 3^^2, 4^^2, 5^^2, 6^^2, 7^^2, 8^^2, 9, 10 *}

In other words,

Computation 20 Let ξ = (g,B) ∈ DK3 be the numerical K3 candidate of
display (5) in section 2.3. The set of projections of ξ consists of 22 candidates
in DK3 whose weights are spread across codimensions 1 to 10 as follows:

codim 1 2 3 4 5 6 7 8 9 10
number 6 2 2 2 2 2 2 2 1 1

.

Since ξ represents a K3 Hilbert series, so does each of these 22 candidates.

A Tables of results
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−1 0 1 2 3 4 5 6 7 8 9 total
1 54 32 6 2 1 0 0 0 0 0 0 95
2 45 29 6 2 1 1 0 0 0 0 0 84
3 26 29 8 3 2 1 1 0 0 0 0 70
4 60 54 15 6 3 2 1 1 0 0 0 142
5 58 63 21 8 6 3 2 1 1 0 0 163
6 80 98 35 15 8 6 3 2 1 1 0 249
7 81 116 49 21 15 8 6 3 2 1 1 303
8 128 182 79 35
9 107 208 109 49
10 192 312 171 79
11 167 369 236 109
12 238 497 353 171
13 245 603 488 236
14 346 759 720 353
15 316 728 982 488
16 402 744 1419 720
17 337 581 1930 982
18 350 457 0 1419
19 266 267 0 1930
20 258 171 0 0
21 161 85 0 0
22 139 55 0 0
23 93 24 0 0
24 57 13 0 0
25 35 3 0 0
26 22 0 0 0
27 12 0 0 0
28 5 0 0 0
29 1 0 0 0

total 4281 6479 6627 6628

Table 1: Number of ξ ∈ DK3 by codimension (down) and genus (across)
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K3 surface ρX Basket B Degree A2

X50 ⊂ P(7, 8, 10, 25) 19 1

2
+ 2·3

5
+ 2·5

7
+ 7

8
1/280

X36 ⊂ P(7, 8, 9, 12) 19 2

3
+ 3

4
+ 3·4

7
+ 7

8
1/168

X40 ⊂ P(5, 7, 8, 20) 18 3

4
+ 2 × 2·3

5
+ 6

7
1/140

X66 ⊂ P(5, 6, 22, 33) 18 1

2
+ 2

3
+ 2·3

5
+ 2·9

11
1/330

X38 ⊂ P(5, 6, 8, 19) 18 1

2
+ 4

5
+ 5

6
+ 3·5

8
1/120

X27 ⊂ P(5, 6, 7, 9) 18 2

3
+ 4

5
+ 5

6
+ 3·4

7
1/70

X34 ⊂ P(4, 6, 7, 17) 17 2 × 1

2
+ 3

4
+ 5

6
+ 3·4

7
1/84

X54 ⊂ P(4, 5, 18, 27) 17 1

2
+ 3

4
+ 2·3

5
+ 2·7

9
1/180

X32 ⊂ P(4, 5, 7, 16) 17 2 × 3

4
+ 4

5
+ 3·4

7
1/70

X30 ⊂ P(4, 5, 6, 15) 16 2 × 1

2
+ 2

3
+ 3

4
+ 2 × 4

5
1/60

X24 ⊂ P(3, 6, 7, 8) 16 1

2
+ 4 × 2

3
+ 6

7
1/42

X48 ⊂ P(3, 5, 16, 24) 16 2 × 2

3
+ 4

5
+ 3·5

8
1/120

X21 ⊂ P(3, 5, 6, 7) 16 3 × 2

3
+ 2·3

5
23 + 5

6
1/30

X42 ⊂ P(3, 4, 14, 21) 15 1

2
+ 2 × 2

3
+ 3

4
+ 2·5

7
1/84

X24 ⊂ P(3, 4, 5, 12) 15 2 × 2

3
+ 2 × 3

4
+ 2·3

5
1/30

X18 ⊂ P(3, 4, 5, 6) 15 1

2
+ 3 × 2

3
+ 3

4
+ 4

5
1/20

X15 ⊂ P(3, 3, 4, 5) 14 5 × 2

3
+ 3

4
1/12

X30 ⊂ P(2, 6, 7, 15) 14 5 × 1

2
+ 2

3
+ 6

7
1/42

X42 ⊂ P(2, 5, 14, 21) 14 3 × 1

2
+ 4

5
+ 3·4

7
1/70

X26 ⊂ P(2, 5, 6, 13) 14 4 × 1

2
+ 2·3

5
+ 5

6
1/30

X22 ⊂ P(2, 4, 5, 11) 13 5 × 1

2
+ 3

4
+ 4

5
1/20

X30 ⊂ P(2, 3, 10, 15) 12 3 × 1

2
+ 2 × 2

3
+ 2·3

5
1/30

X18 ⊂ P(2, 3, 4, 9) 12 4 × 1

2
+ 2 × 2

3
+ 3

4
1/12

X12 ⊂ P(2, 3, 3, 4) 12 3 × 1

2
+ 4 × 2

3
1/6

X14 ⊂ P(2, 2, 3, 7) 10 7 × 1

2
+ 2

3
1/6

X24,30 ⊂ P(8, 9, 10, 12, 15) 19 1

2
+ 2

3
+ 3

4
+ 2·3

5
+ 8

9
1/180

X18,30 ⊂ P(6, 8, 9, 10, 15) 18 2 × 1

2
+ 2 × 2

3
+ 4

5
+ 7

8
1/120

X16,18 ⊂ P(4, 6, 7, 8, 9) 17 2 × 1

2
+ 2

3
+ 2 × 3

4
+ 6

7
1/42

X14,16 ⊂ P(4, 5, 6, 7, 8) 17 1

2
+ 2 × 3

4
+ 2·3

5
+ 5

6
1/30

X12,14 ⊂ P(4, 4, 5, 6, 7) 16 2 × 1

2
+ 3 × 3

4
+ 4

5
1/20

X10,12 ⊂ P(3, 4, 4, 5, 6) 15 1

2
+ 2 × 2

3
+ 3 × 3

4
1/12

X6,6 ⊂ P(2, 2, 2, 3, 3) 10 9 × 1

2
1/2

X16,...,20 ⊂ P(5, 6, 7, 8, 9, 10) 18 1

2
+ 2

3
+ 4

5
+ 2·3

5
+ 6

7
1/42

X14,...,18 ⊂ P(5, 5, 6, 7, 8, 9) 18 4

5
+ 2 × 2·3

5
+ 5

6
1/30

X ⊂ P(6, 6, 7, 8, 9, 10, 11) 18 2 × 1

2
+ 2 × 2

3
+ 5

6
+ 6

7
1/42

X ⊂ P(5, 6, 6, 7, 8, 9, 10) 18 1

2
+ 2

3
+ 2·3

5
+ 2 × 5

6
1/30

Table 2: K3 surfaces with g = −1 having no Gorenstein projection
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K3 surface ρX Basket B Degree A2

X42 ⊂ P(1, 6, 14, 21) 10 1

2
+ 2

3
+ 6

7
1/42

X36 ⊂ P(1, 5, 12, 18) 10 2·3
5

+ 5

6
1/30

X30 ⊂ P(1, 4, 10, 15) 9 1

2
+ 3

4
+ 4

5
1/20

X24 ⊂ P(1, 3, 8, 12) 8 2 × 2

3
+ 3

4
1/12

X18 ⊂ P(1, 2, 6, 9) 6 3 × 1

2
+ 2

3
1/6

X10 ⊂ P(1, 2, 2, 5) 6 5 × 1

2
1/2

Table 3: K3 surfaces with g = 0 having no Gorenstein projection

general member  degeneration

X4 ⊂ P(1, 1, 1, 1)  Y2,4 ⊂ P(1, 1, 1, 1, 2)

X6 ⊂ P(1, 1, 2, 2)  Y3,6 ⊂ P(1, 1, 2, 2, 3)

X8 ⊂ P(1, 2, 2, 3)  Y4,8 ⊂ P(1, 2, 2, 3, 4)

X10 ⊂ P(1, 2, 3, 4)  Y5,10 ⊂ P(1, 2, 3, 4, 5)

X12 ⊂ P(1, 2, 4, 5)  Y6,12 ⊂ P(1, 2, 4, 5, 6)

X12 ⊂ P(2, 3, 3, 4)  Y6,12 ⊂ P(2, 3, 3, 4, 6)

X14 ⊂ P(2, 3, 4, 5)  Y7,14 ⊂ P(2, 3, 4, 5, 7)

X18 ⊂ P(3, 4, 5, 6)  Y9,18 ⊂ P(3, 4, 5, 6, 9)

X6 ⊂ P(1, 1, 1, 3)  Y2,6 ⊂ P(1, 1, 1, 2, 3)

X12 ⊂ P(1, 2, 3, 6)  Y4,12 ⊂ P(1, 2, 3, 4, 6)

X18 ⊂ P(1, 3, 5, 9)  Y6,18 ⊂ P(1, 3, 5, 6, 9)

X18 ⊂ P(2, 3, 4, 9)  Y6,18 ⊂ P(2, 3, 4, 6, 9)

X24 ⊂ P(3, 4, 5, 12)  Y8,24 ⊂ P(3, 4, 5, 8, 12)

X30 ⊂ P(4, 5, 6, 15)  Y10,30 ⊂ P(4, 5, 6, 10, 15)

Table 4: Some codimension 2 degenerations among the famous 95
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